

DIONE

X-RAY · AI-POWERED DIAGNOSTIC SYSTEM

Explore the transformative potential of an innovative X-ray AI-Powered Diagnostic System that enhances healthcare efficiency and accuracy.

Key Components and Functionalities

HANDHELD X-RAY GENERATOR

A portable device that enables quick X-ray imaging in various settings, enhancing patient accessibility.

LAPTOP WITH INTEGRATED SOFTWARE

Features specialized software that streamlines image processing and allows for easy data management.

DIGITAL DETECTOR PLATE

Transmits high-quality images instantly, reducing the time needed for analysis and improving diagnostic accuracy.

AI DIAGNOSIS SYSTEM

Analyzes X-ray images, providing quick and precise diagnostic suggestions.

iRayA6 ADX6000FB Handheld X-ray Generator

Compact & Portable: Designed for easy handling and mobility.
The collimator's light helps to ensure accurate aiming and optimal shooting distance in order to acquire clear images.

Advanced Imaging Technology: Features adjustable tube voltage (kV) and current (mA) for precise imaging.

User-Friendly Interface: 4.3" **Touch Panel TFT LCD** for intuitive control.

The system uses a **Long lasting 5 Cell High-capacity rechargeable battery** that allows an adequate amount (up to 200) of shots with a fully charged battery.

Enhanced Safety Features: Low radiation exposure with optimized radiation field control.

2

3

5

1

1/7th lower radiation dose than wall mounted X-ray.

2

Ensure both user and patient's safety by reducing radiation exposure.

3

The converter type
Digital generator
and collimator
are shielded
with thick
multilayered
lead to prevent
radiation leakage.

4

Robust and convenient Handle provide a stable exposure as well as convenience.

5

The Exposure button only emits radiation on the second push of the button, which prevents accidental radiation exposure.

Advanced Protection

Radiation Safety

- The implementation of a Skin Guard (SSD Cage) ensures minimal distance between the device and the patient, prioritizing patient safety and well-being.
- Internal Multiple Lead wrapping guarantees complete containment of radiation, leaving no room for any leakage.
- The generator are wrapped with lead, preventing radiation leakage.
- The ADX6000FB has been deemed a secure device for operation by esteemed professionals, including Professor David M. Hamby, a renowned health physics expert at Oregon State University.

DIONE BT-DA22W Wireless X-ray Detector

High-Resolution Imaging: 16-bit grayscale (65,536 shades) for superior image clarity.

Fast Image Acquisition: Preview available in under 6 seconds.

Wireless & Wired Connectivity: Supports Wi-Fi (802.11ac) and Gigabit Ethernet for seamless data transfer.

Durable & Portable: IP67-rated for dust and water resistance, with a lightweight 2.92kg design.

Long Battery Life: Operates for over 4 hours on a single charge.

Optimized for Medical Use: Works with AI-based advanced medical software for enhanced diagnostics.

Raw Image Quality

DIONE Laptop & Advanced Medical Software

High-Performance Processing: Equipped with an **Intel Core i5** for fast data handling.

Medical-Grade Display: 15.6" Full HD screen for clear X-ray image analysis.

Integrated Advanced medical Software: Manages X-ray images, patient records, and AI-assisted diagnostics.

Secure & Compliant: Encrypted storage ensures data privacy and regulatory compliance.

Seamless Connectivity: Supports Wi-Fi, Ethernet, and PACS integration for efficient workflow.

Advanced Medical Software

An advanced medical imaging software designed for X-ray system consoles, ensuring seamless integration with X-ray detectors and generators. It provides efficient image management, AI-assisted analysis, and DICOM compatibility for hospital PACS (Picture Archiving and Communication Systems).

Advanced Medical Software

- Real-time Image Review: Instantly display captured X-ray images for rapid assessment.
- Advanced Image Processing Tools: Contrast adjustments, rotation, inversion, ROI selection, and windowing.
- DICOM & PACS Integration: Ensures smooth transmission and storage of medical images.
- Patient Worklist Management: Retrieve and manage patient data from the PACS system.
- User Access Control: Secure login system with role-based access.
- Study Management: Organizes captured images with filtering, sorting, and AI integration.
- DICOM Printing & PACS Transmission: Enables seamless medical data sharing within hospitals.

AI Diagnosis System

Instant Medical Analysis: AI detects abnormalities in X-ray images within 20 seconds.

High Accuracy & Reliability: Advanced deep learning algorithms reduce human error and improve diagnostic confidence.

Automated Anomaly Detection: Identifies fractures, infections, lung diseases, and other critical conditions.

Seamless PACS Integration: AI-generated reports and marked images can be securely stored and shared with radiologists.

Continuous Learning: Machine learning algorithms improve over time with ongoing data training.

Detection of 10 Abnormal Findings

Pneumothorax Nodule Consolidation Pleural Cardiomegaly Pneumoperitoneum Effusion Atelectasis Calcification Fibrosis Mediastinal Tuberculosis Widening

Components

A. Pelican Case Type

B. Backpack Type

C. Stand (Option)

Certificates

The **DIONE X-ray System** meets **international medical safety and quality standards**, ensuring **high reliability and compliance** in clinical environments:

- ✓ IP67 Certification The X-ray detector is dustproof and water-resistant, ensuring durability in various conditions.
- ✓ DICOM Compliance Supports DICOM protocols for seamless integration with PACS (Picture Archiving and Communication Systems) used in hospitals and clinics.

- ✓ AI-Based Medical Imaging Standards Uses deep learning algorithms for high-accuracy diagnostics, improving efficiency while reducing human error.

Dione

- ✓ Movable
- ✓ Low X-Ray Dose
- ✓ No Electric Power
- ✓ No Shielding Room
- ✓ Easy Install
- ✓ Low Invest
- ✓ O Cost Use

General X-Ray

X Stationary

VS

- X High X-Ray Dose
- X High Electric Power
- X Shielding Room
- X Big Volume
- X High Invest
- X High Cost Use

Human and AI Diagnostic Cases

An X-ray of a 54-year-old male lung cancer patient was taken every year. Doctors diagnosed lung cancer in 2016, while AI already detected the risk of lung cancer in 2013.

Doctor

ΑI

X-Ray Attenuation

A. Wood

B. Concrete

C. Iron

Wood HVL (half value layer):

39.8 mm

Concrete HVL (half value layer):

10.93 mm

Wood TVL (Tenthvaluelayer):

131.3 mm

Concrete TVL (Tenthvaluelayer):

36.33 mm

Iron HVL (half value layer): 0.28 mm

Iron TVL (Tenthvaluelayer): 0.93 mm

	80kV/5mA/0.5sec		
	Exposure Time (ms)	Exposure Dose (µGy)	
1	517.4364	162.52775	
2	512.9197	161.73675	
3	512.4178	162.17425	
		162.14625	
	Exposure Time (ms)	Exposure Dose (µGy)	
1	512.4374	134.498	
2	512.9201	133.5705	
1	517.9573 110.311		
2	513.9234	110.348	
	wood HVL	39.81668217	

	Lead	(mm)	Concrete (mm)		
	HVL	TVL	HVL	TVL	
70	0.17	0.52	8.40	28.00	
80	0.20	0.64	10.93	36.33	
100	0.27	0.88	16.00	53.00	

	80kV/5mA/0.5sec		
	Exposure Time (ms)	Exposure Dose (µGy)	
1	507.8	162.7	
2	507.9	162.3	
3	507.4	162.4	
	162.4666667		
	Exposure Time (ms)	Exposure Dose (µGy)	
1	489.3	14.07	
1	501.3	14.16	
3	497.8	14.06	
4	499.8	14.1	
5	495.8	14.02	
6	497.8	14.12	
		14.08	
	Iron HVL	0.283420998	

Radiation Leakage Measurements

DIRECTION		HORIZONTAL		VERTICAL		
Section	Test 1	Test2	Test3	Test1	Test2	Test3
0°(360°)	ND	ND	ND	ND	ND	ND
45°	ND	ND	ND	ND	ND	ND
90°	ND	ND	ND	ND	ND	ND
165°	ND	ND	ND	ND	ND	ND
180°	ND	ND	ND	ND	ND	ND
225°	ND	ND	ND	ND	ND	ND
270°	ND	ND	ND	ND	ND	ND
315°	ND	ND	ND	ND	ND	ND

1m from the Case Surface

Unit: [mR/h, (mGy/h)]
ND: Not Detected

History of Bontech

2013	Estd. Digital X-ray Detector Division	
2015	Medical Detector Launching - ISO13485/GMP/KFDACertificated	
2016	Launching and exported detectors for VE (HongKong, Southeast Asia) - CECertificated	
2017	North America export - FDA registration.	
2019	Launched X-Ray system for veterinary	
2020	Launch of EOD system and Supply to national organizations - Presidential Security Service Team, etc	
2021	Launched a detector for breast cancer Diagnosis (Mammo)	

BONTECH CO., LTD. -ESTABLISHED IN 2013, **BONTECH SPECIALIZES IN X-**RAY DEVICE AND HAS **DEVELOPMENT TECHNOLOGY** AND MANUFACTURING FACILITIES, INCLUDING A CORPORATE RESEARCH CENTER AND CLEAN ROOM.

Calton Hill

Exclusive European Sales Agent www.caltonhill.biz Info@caltonhill.biz

Project Lead: **Dr. Kostaras George** G.Kostaras@caltonhill.biz

AI technology significantly reduces diagnostic errors and accelerates the interpretation process, improving patient outcomes and radiologist efficiency.

